华师一附中OI组

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 1372|回复: 2
打印 上一主题 下一主题

单调队列与单调栈

[复制链接]

738

主题

1485

帖子

5422

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
5422
跳转到指定楼层
楼主
发表于 2018-8-27 09:37:52 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
队列和栈是很常见的应用,大部分算法中都能见到他们的影子。

而单纯的队列和栈经常不能满足需求,所以需要一些很神奇的队列和栈的扩展。

其中最出名的应该是优先队列吧我觉得,然后还有两种比较小众的扩展就是单调队列和单调栈。

一个问题,给一个长度为N的数列,a1,a2。。。aN,然后给一个k<=N,求输出b1,b2。。。bN这N个数,其中 bi=max( aj | j<=i && j>i-k && j>0 )。讲人话就是说求以ai结尾的连续K个数的最大值。

比较朴素的想法是用一个Nk复杂度的循环来求,但是这样的话如果N很大的话就太慢了。

然后还有一种想法是维护一个BST,然后for循环从左到右,依次加入到BST里面,如果某个数超出了k的范围,就从BST中删除。

伪代码如下:
  1. void getans() {
  2.     BST tree;

  3.     for(int i=1,j=1;i<=N;++i) {
  4.         tree.insert(a[i]);
  5.         while(j<=i-k) {
  6.             tree.erase(a[j]);
  7.             --j;
  8.         }
  9.         cout<<tree.max()<<endl;
  10.     }
  11. }
复制代码


这样的话因为每个数只insert一次,最多erase一次,所以复杂度是NlogN的,已经很不错了。

但是BST比较高级,所以速度并不快,那么能不能根据这个问题的特点来设计一种更快的数据结构来解决?

看这个问题,如果for循环从左到右来求b的话,就像是有个长度为k的框框一次次向右移动,每次求框内的最大值。

如果类比到队列的话,就是for循环的时候每次push一个数在队尾,然后把最前面那个超出的数pop出来,然后求队列内的最大值就行了。

但是一般的队列并不能求最大值,就需要一些扩展型的队列了。

单调队列就是队列内所有数都是单调递增的或者递减的。下面按照从队首到队尾递减的队列来讨论。

  先看看push(x):

    如果当前队列为空的话,直接push进去就行。

    如果当前队列末尾的数比x大,那么直接放到队尾,这时仍然是单调的。

    如果末尾的数比x小的话,就扔掉队尾的数,然后再重复上面的步骤push(x)。

    比如队列中是  5 4 2 1,然后push 3 进去的话,就把1和2扔掉,变成5 4 3,如果再push 7 进去的话,就把5 4 3 扔掉,队列变成了 7 。

  然后pop的话和一般队列没有区别。



  然后这个数据结构如果应用到这个问题上的话,看看答案是否是对的。

  for循环从左到右,然后每次push当前的ai,然后判断如果队首的元素的位置超出了框框,就pop出来扔掉。然后这是bi就等于pop完之后队首的数。
  1. struct Queue {
  2.     int val[MaxN],pos[MaxN];
  3.     int first,last;

  4.     void init() {
  5.         first=last=0;
  6.     }

  7.     void push(int v,int p) {
  8.         while(last-first>0 && val[last-1]<=v) --last;
  9.         val[last]=v;
  10.         pos[last++]=p;
  11.     }

  12.     void pop() {
  13.         if(last-first>0) ++first;
  14.     }

  15.     int firstPos() {
  16.         return pos[first];
  17.     }

  18.     int firstVal() {
  19.         return val[first];
  20.     }
  21. };

  22. void getans() {
  23.     Queue que;
  24.     que.init();

  25.     for(int i=1;i<=N;++i) {
  26.         que.push(a[i],i);
  27.         while(que.firstPos()<=i-k) que.pop();
  28.         cout<<que.firstVal().val<<endl;
  29.     }
  30. }
复制代码

先来看看这样对不对,首先队列是单调的,所以队首的数一定是最大的,这个数在失效的时候,在他位置前面的所有数也一定都失效了,而他位置后面的所有数还没失效,仍然符合最大的前面,也就是最大的仍然还在队列中没有被扔掉。所以下一次询问的时候仍然答案是对的。

然后看看复杂度如何,每个数只push了一次,然后最多会被扔掉一次,所以虽然push里面有while循环,但是这N个数每个最多被遍历一次然后就被扔掉了,所以for循环N次下来,均摊的复杂度是O(1)的对于每个push和pop操作,所以总复杂度是O(N)的。

然后这就是单调栈,单调栈和单调队列区别不大,都是每次push的时候要维护单调性。

有一道题目 POJ 2796 ,需要先进行转化然后在使用单调栈来解决。

单调栈和单调队列在大部分情况下是一种工具,对于一些问题能够优化到N的复杂度,这样会比logN快很多。所以其实有些情况下不用这个,用其他的数据结构也是可以做的。
回复

使用道具 举报

738

主题

1485

帖子

5422

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
5422
沙发
 楼主| 发表于 2018-9-11 17:53:10 | 只看该作者
典型例题:
回复 支持 反对

使用道具 举报

738

主题

1485

帖子

5422

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
5422
板凳
 楼主| 发表于 2020-2-28 10:08:43 | 只看该作者
首先看一个问题。

给定一个数列,从左至右输出每个长度为k的数列段内的最小数和最大数(第一行输出每个区间最小值,第二行输出最大值)。
数列长度:N≤106,k≤N

解法①

很直观的一种解法,那就是从数列的开头,找到这最开始的k个数的最大值,然后后移一个单元,继续找到k个数中的最大值。
这种方法每求一个f(i),都要进行k-1次的比较,复杂度为O(Nk)。
显然,如果暴力时间复杂度为O(Nm)不超时就怪了。

解法②

核心思想:去除无用的状态,保存有用的状态。考虑这样一个问题:

现在区间中有两个元素a[i], a[j],且满足i<j,a[j]≥a[i](假设要求区间内最大值)
就是说a[j]比a[i]还大而且还在后面,那么a[j]肯定比a[i]有用(因为区间是往后推,找到的最大值有可能是a[i],但不可能是a[j])。因此a[i]对于求这段区间的最值是没用的了。
现在我们维护一个单调递减队列,并从队尾入队、队头出队(队内元素序号递增)。每次入队a[j]时,从队尾往前找到第一个大于a[j]的元素,并把a[j]插入到它后面。也就是说小于a[j]的元素不要了,因为它们对求出区间内的最大值来说是无用的。随着区间后移,再把队头超出区间范围的元素弹出。

单调队列实现的大致过程:

1、维护队首(对于上题就是如果队首已经是当前元素的m个之前,则队首就应该被删了,head++)
2、在队尾插入(每插入一个就要从队尾开始往前去除冗杂状态,保持单调性)

简单举例应用
数列为:6 4 10 10 8 6 4 2 12 14
N=10,K=3;
那么我们构造一个长度为3的单调递减队列:
首先,那6和它的位置0放入队列中,我们用(6,0)表示,每一步插入元素时队列中的元素如下
插入6:(6,0);
插入4:(6,0),(4,1);
插入10:(10,2);
插入第二个10,保留后面那个:(10,3);
插入8:(10,3),(8,4);
插入6:(10,3),(8,4),(6,5);
插入4,之前的(10,3)已经超出范围所以排掉:(8,4),(6,5),(4,6);
插入2,同理:(6,5),(4,6),(2,7);
插入12:(12,8);
插入14:(14,9);
那么f(i)就是第i步时队列当中的首元素:6,6,10,10,10,10,8,6,12,14
同理,最小值也可以用单调队列来做。

单调队列的时间复杂度是O(N),因为每个数只会进队和出队一次,所以这个算法的效率还是很高的。
注意:建议直接用数组模拟单调队列,因为系统自带容器不方便而且不易调试,同时,每个数只会进去一次,所以,数组绝对不会爆,空间也是S(N),优于堆或线段树等数据结构。

更重要的:单调是一种思想,当我们解决问题的时候发现有许多冗杂无用的状态时,我们可以采用单调思想,用单调队列或类似于单调队列的方法去除冗杂状态,保存我们想要的状态。

Copy
#include<cstdio>
#define reg register
const int MAX=7000001;
int n,k,a[MAX];
int Min[MAX],Max[MAX];
struct node{
    int x,id; //x:值 id:位置(原序列中的下标)
}v[MAX];
void get_min(){
    int head=1,tail=0; //默认起始位置为1 因为插入是v[++tail]故初始化为0
    for(reg int i=0;i<k-1;++i){ //根据题目 前m-1个先直接进入队列
        while(head<=tail && v[tail].x>=a[i]) --tail;
        v[++tail].x=a[i], v[tail].id=i;
    }
    for(reg int i=k-1;i<n;++i){
        while(head<=tail && v[tail].x>=a[i]) --tail;
        v[++tail].x=a[i], v[tail].id=i;
        while(v[head].id<i-k+1) ++head;
        Min[i-k+1]=v[head].x;
        //道理同上,当然了,要把已经超出范围的从head开始排出
        //然后每个队首则是目前k个数的最小值

    }
}
void get_max(){ //最大值同最小值的道理,只不过是维护的是递减队列
    int head=1,tail=0;
    for(reg int i=0;i<k-1;++i){
        while(head<=tail && v[tail].x<=a[i]) --tail;
        v[++tail].x=a[i], v[tail].id=i;
    }
    for(reg int i=k-1;i<n;++i){
        while(head<=tail && v[tail].x<=a[i]) --tail;
        v[++tail].x=a[i], v[tail].id=i;
        while(v[head].id<i-k+1) ++head;
        Max[i-k+1]=v[head].x;
    }
}
void output(){
    printf("%d",Min[0]);
    for(reg int i=1;i<n-k+1;++i) printf(" %d",Min[i]);
    printf("\n%d",Max[0]);
    for(reg int i=1;i<n-k+1;++i) printf(" %d",Max[i]);
    printf("\n");
}
int main(){
    scanf("%d%d",&n,&k);
    for(reg int i=0;i<n;++i) scanf("%d",&a[i]);
    get_min(); get_max(); output();
    return 0;
}
关于单调栈的一道题目

问题描述
地上从左到右竖立着 n 块木板,从 1 到 n 依次编号,如下图所示。我们知道每块木板的高度,在第 n 块木板右侧竖立着一块高度无限大的木板,现对每块木板依次做如下的操作:对于第 i 块木板,我们从其右侧开始倒水,直到水的高度等于第 i 块木板的高度,倒入的水会淹没 ai 块木板(如果木板左右两侧水的高度大于等于木板高度即视为木板被淹没),求 n 次操作后,所有 ai 的和是多少。如图上所示,在第 4 块木板右侧倒水,可以淹没第 5 块和第 6 块一共 2 块木板,a4 = 2。


解法①

暴力求解,复杂度是O(n2)
例如现在存在5块木板
每块木板从左至右高分别为
10,5,8,12,6
从第一块木板(高度为10)右侧开始倒水,当水到达第四块木板(高度为12)时,可以淹没第一块木板
即第一块木板至第四块木板之间的木板数量,即4-1-1 = 2,a1 = 2;
也就是说:寻找在第 i 个木板右边第一个比它大的木板j,ai 就等于木板 i 和木板 j 之间的木板数
同理得到
a2=0
a3=0
a4=1
a5=0
sum = a1 + a2 +a3 +a4 +a5 = 3
于是,问题就变成了寻找在第 i 个数右边第一个比它大的数。可以暴力求解,从 1 循环到 n,对每块木板再往右循环一遍,这样的时间复杂度是O(n2) 。

解法②

单调栈来求解的话,复杂度是O(n)
结合单调栈的性质:使用单调栈可以找到元素向左遍历第一个比他小的元素,也可以找到元素向左遍历第一个比他大的元素。
顾名思义,单调栈就是栈内元素单调递增或者单调递减的栈,这一点和单调队列很相似,但是单调栈只能在栈顶操作。

单调栈有以下两个性质:
1、若是单调递增栈,则从栈顶到栈底的元素是严格递增的。若是单调递减栈,则从栈顶到栈底的元素是严格递减的。
2、越靠近栈顶的元素越后进栈。
单调栈与单调队列不同的地方在于栈只能在栈顶操作,因此一般在应用单调栈的地方不限定栈的大小,否则可能会造成元素无法进栈。
元素进栈过程:对于单调递增栈,若当前进栈元素为e,从栈顶开始遍历元素,把小于e或者等于e的元素弹出栈,直接遇到一个大于e的元素或者栈为空为止,然后再把e压入栈中。对于单调递减栈,则每次弹出的是大于e或者等于e的元素。

数据模拟木板倒水单调栈的入栈计算过程

思路:寻找比栈顶高的木板i,找到就出栈,不是就把木板i入栈,给出循环计数样例 10,5,8,12,6
从左往右扫描
栈为空,10入栈 栈:10 此时栈顶是10,也就是说要寻找比10大的木板
5比10小,5入栈 栈:5,10 此时栈顶是5,也就是说要寻找比5大的木板
8比5大,5出栈 栈:10
这个时候,第二个高度为5的木板右边比它高的木板已经找到了,是第三个木板8,所以5出栈,计算a2 = 3-2-1 = 0
8比10小,8入栈 栈:8,10 此时栈顶是8,也就是说要寻找比8大的木板
12比8大,8出栈 栈:10
第三个高度为8的木板右边比它高的木板已经找到了,是第四个木板12,8出栈,计算a3 = 4-3-1 = 0
12比10大,10出栈 栈:空
第一个高度为10的木板右边比它高的木板已经找到了,是第四个木板12,所以10出栈,计算a1 = 4-1-1 = 2
栈为空,12入栈 栈:12 此时栈顶是12,也就是说要寻找比12大的木板
6比12小,6入栈 栈:6,12 此时栈顶是6,也就是说要寻找比6大的木板
扫描完成结束

最后栈的结构是:6,12 栈顶为6
由于最右端竖立着一块高度无限大的木板,即存在第六块木板高度为无穷,所以剩余两块木板的算法如下 a5 = 6-5-1 =0
a4 = 6-4-1 = 1
sum = a1 + a2 +a3 +a4 +a5 = 3
因此本题可以在O(n)的时间内迎刃而解了。
从左往右将木板节点压栈,遇到比栈顶木板高的木板就将当前栈顶木板出栈并计算淹没的木板数,如此循环直到栈顶木板高度比当前木板高或者栈为空,然后将此木板压栈。木板全都压栈完成后,栈内剩余的木板都是右侧没有比它们更高的木板的,所以一个个出栈并计算ai=n+1-temp_id-1(用最右边无限高的木板减)。

Copy
//从左往右解木板倒水
int main() {
    int n,ans=0;
    cin>>n;
    Stack<Node> stack(n);
    Node temp;
    for(int i=1;i<=n;i++){
        cin>>temp.height;
        temp.id=i;
        //遇到了右侧第一个比栈顶元素大的元素,计算并出栈
        while(!stack.empty()&&stack.top().height<=temp.height){
            ans=ans+i-stack.top().id-1;
            stack.pop();
        }
        stack.push(temp);
    }
    //现在栈中的木板右侧没有比它高的木板,用最右侧无限高的木板减
    while(!stack.empty()){
        ans=ans+n+1-stack.top().id-1;
        stack.pop();
    }
    cout<<ans<<endl;
    return 0;
}
也可设a[n+1]=INF,可以省去最后出队的while。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|服务支持:DZ动力|华师一附中OI组  

GMT+8, 2024-12-26 01:43 , Processed in 0.202643 second(s), 24 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表