https://www.luogu.org/problemnew/show/P1464
题目描述
对于一个递归函数 w(a,b,c)w(a,b,c)
如果 a \le 0a≤0 or b \le 0b≤0 or c \le 0c≤0 就返回值 11 .
如果 a>20a>20 or b>20b>20 or c>20c>20 就返回 w(20,20,20)w(20,20,20)
如果 a<ba<b 并且 b<cb<c 就返回 w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c)w(a,b,c−1)+w(a,b−1,c−1)−w(a,b−1,c)
其它的情况就返回 w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1)w(a−1,b,c)+w(a−1,b−1,c)+w(a−1,b,c−1)−w(a−1,b−1,c−1)
这是个简单的递归函数,但实现起来可能会有些问题。当 a,b,ca,b,c 均为15时,调用的次数将非常的多。你要想个办法才行.
/* absi2011 : 比如 w(30,-1,0)w(30,−1,0) 既满足条件1又满足条件2
这种时候我们就按最上面的条件来算
所以答案为1
*/
输入输出格式
输入格式:
会有若干行。
并以 -1,-1,-1−1,−1,−1 结束。
保证输入的数在 [-9223372036854775808,9223372036854775807][−9223372036854775808,9223372036854775807] 之间,并且是整数。
输出格式:
输出若干行,每一行格式:
w(a, b, c) = ans
注意空格。
输入输出样例
输入样例#1:
1 1 1
2 2 2
-1 -1 -1
输出样例#1:
w(1, 1, 1) = 2
w(2, 2, 2) = 4 |