华师一附中OI组
标题: 最短路径—Floyd算法 [打印本页]
作者: diggersun 时间: 2016-3-9 15:17
标题: 最短路径—Floyd算法
Floyd算法
1.定义概览
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。
2.算法描述
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。
3).Floyd算法过程矩阵的计算----十字交叉法
方法:两条线,从左上角开始计算一直到右下角 如下所示
给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点
相应计算方法如下:
最后A3即为所求结果
3.算法代码实现
- typedef struct
- {
- char vertex[VertexNum]; //顶点表
- int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
- int n,e; //图中当前的顶点数和边数
- }MGraph;
- void Floyd(MGraph g)
- {
- int A[MAXV][MAXV];
- int path[MAXV][MAXV];
- int i,j,k,n=g.n;
- for(i=0;i<n;i++)
- for(j=0;j<n;j++)
- {
- A[i][j]=g.edges[i][j];
- path[i][j]=-1;
- }
- for(k=0;k<n;k++)
- {
- for(i=0;i<n;i++)
- for(j=0;j<n;j++)
- if(A[i][j]>(A[i][k]+A[k][j]))
- {
- A[i][j]=A[i][k]+A[k][j];
- path[i][j]=k;
- }
- }
- }
复制代码
欢迎光临 华师一附中OI组 (http://hsyit.cn/) |
Powered by Discuz! X3.2 |